
An Effective Solution for the Byzantine Agreement
Problem through Lamport- Shostak-Pease

Algorithm.
K.Nagaraju 1 and S.V.Hemanth 2

1 Dept. of Computer Technology, Kavikulguru Institute of Technology and Science, Ramtek,
RTM Nagpur University, Nagpur,Maharashtra, India.

2 Dept. of Computer Technology, Kavikulguru Institute of Technology and Science, Ramtek,
RTM Nagpur University, Nagpur,Maharashtra, India.

Abstract
Distributed computing systems consisting of several computers that do not share a memory or a clock, the computers
communicate with each other by exchanging messages over a communication network. To achieve authenticity, the fault-
tolerance scheme of the distributed computing system must be reconsidered. This type of problem is known as a Byzantine
Agreement Problem (BAP). It requires all fault-free processors to agree on a common value, even if some components are
fault. Consequently, there have been significant studies of this agreement problem in distributed systems. However, the
traditional Byzantine Agreement protocols focus on running k ≥ 3m+1 rounds of message exchange continuously to make each
fault-free processor reach an agreement. In other way, since having a large number of messages results in a large protocol
overhead, those protocols are inefficient and unreasonable, especially for some network environments which have large
number of processors.,Byzantine Agreement protocol can collect, compare and replace the received values to find
the authentic processors and replace the values sent by the fault processors. Where sites (or processors) often compete as well
as cooperate to achieve a common goal, it is often required that sites reach mutual agreement. [1]

Keyword: Distributed systems, Fault Tolerance, Byzantine Agreement Problem, Lamport- Shostak-Pease Algorithm (LSPA)

1. INTRODUCTION

In this paper, authenticate communication in distributed
systems. One important aspect is how the system
effectively copes with failures. There exist many well-
studied failures, like crash failure which failed component
simply stops communicating messages. Yet some other
failures may send out conflicting messages to different
system components. Lamport et al. investigated this failure,
and they model it as the Byzantine Generals Problem,
which made this special type of failure well known as the
“Byzantine failure’’ model. Their simple conclusion is that,
using only oral messages (which implied the message is
forgeable), the problem is solvable if more than two thirds
of the generals are loyal. With unforgivable (written)
messages, the problem is solvable for any number of
generals and possible faulters. These results indeed are very
interesting and let us see how the authors unfold this story
little by little. The authors motivated the problem as the
decision making process of the Byzantine Generals, among
who may exists faulters. They made goals for the Byzantine
Generals that:1. All loyal generals decide upon the same
plan of action; 2. A small number of faulters cannot cause
the loyal generals to adopt a bad plan. These two
reasonable goals say about the outcome of the decision, yet
they are hard to formalize (especially goal 2). Instead,
authors took another angle by considering how the actions
(decisions) were taken. Given all the messages the generals
communicate: v_1, v_2,... ,v_k, our goal is to find a
combining scheme to generate a single plan of action out of
all these values. Applying this strategy to convert our goals
into a formal definition.[2]

2. TAXONOMY OF PROBLEMS

All non-faulty processors must agree on value(s) from a
non-faulty processor
Byzantine agreement:
The source processor broadcasts its initial value to all other
processes.
Agreement: All nonfaulty processors agree on the same
value.
Validity: If the source processor is nonfaulty, the common
agreed upon value by all nonfaulty processors should be the
initial value of the source
Consensus:
Every processor broadcast the initial value to all other
processors.
Agreement: All nonfaulty processors agree on the same
value.
Validity: If the initial value of every nonfaulty processor is
v, then the agreed upon common value by all nonfaulty
processors must be v.
Interactive Consistency:
Every processor broadcasts its initial value to all other
processors.
Agreement: All nonfaulty processors agree on the same
vector. (v_1, v_2, ..., v_k).
Validity: If the ith processor is nonfaulty and its initial
value is v_i, then the ith value to be agreed on by all
nonfaulty processors must be v_i.[3]

3. LAMPORT-SHOSTAK-PEASE ALGORITHM

The authors provided the Oral Message algorithm (OM) for
this scenario. Given one commander and n−1 lieutenants,

K.Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (1) , 2018, 1-3

www.ijcsit.com 1

ISSN:0975-9646

for all nonnegative integers m, we have recursive
algorithms
Algorithm OM(0).
(1) The commander sends his value to every lieutenant.
(2) Each lieutenant uses the value he receives from the

commander, or uses the value RETREAT if he
receives no value.

Algorithm OM(m), m>0.
(1) The commander sends his value to every lieutenant.
(2) For each i, let v_i be the value lieutenant i receives

from the commander, or else be RETREAT if he
receives no value. Lrutenant i acts as the commander
in Algorithm OM(m-1) to send the value v_i to each of
the n-2 other lieutenants.

(3) For each i, and each j ≠ i, let v_j be the value lieutenant
i received from lieutenant j in step (2), or else
RETREAT if he received no such value. Lieutenant i
uses the value majority (v_1, v_2,v_3, ..., v_{k-1}).[4]

4. RESULTS

Impossibility Result:
Byzantine agreement is impossible
if m > ë(k-1)/3 û
e.g., ë (3-1)/3 û = 0
Byzantine agreement is impossible with < (m+1) message
exchanges
LSPA algorithms for solving the Byzantine agreement
problem that falls within these bounds. However, we will
also see that the algorithms are fairly complex. This should
naturally lead one to think twice when designing a system,
to see if there is a way to avoid creating situations that
require agreement. See the following simple example with
3 processors, from text. The arrows indicate state
information made available to other nodes. In the first case,
processor A initiates the agreement protocol and processor
B is maliciously faulty.

C sees that B has decided for 0 and A has decided for 1. To
satisfy the Byzantine agreement problem, C must decide
for 1, since A is not faulty and A has decided for 1. This
implies that the algorithm followed by C (and hence by any
non-faulty non-initiating processor) must break ties in favor
of the initiating processor.
The next case is where the processor A is a faulter, and
reports different values to B and C.

B thinks A has decided for 0 and C thinks A has decided
for 1. If the algorithm breaks ties in favor of the initiator, C
must decide for 1. However, B must follow the same
algorithm, and so it must decide for 0. This means we have
no agreement among the two nonfaulty processors.
Proof of the full theorem generalizes this reasoning to a
larger number of processors.[5]

Possibility Results:
Byzantine Agreement Conditions
1. Agreement: All loyal generals agree on the same value.
2. Validity: If the commander is loyal, then the common

agreed upon value for all loyal lieutenants is the initial
one given by the commander.

Agreement Theorem
Theorem: For any m, OM(m) satisfies the Validity and
Agreement Conditions if there are more than 3m generals
and at most m of them are faulters.

Proof:
The proof is by induction on m, similar to that of the
Validity Lemma. As a basis for the induction, we consider
the case of OM(0). If there are no faulters, it is easy to see
that OM(0) satisfies the Validity and Agreement
Conditions. We therefore can assume the theorem is true
for OM(m-1) and prove that it is true for OM(m), m > 0.
For the induction step, have m ³ 1. We consider two cases,
depending on whether the commander is a faulter.
1. Suppose the commander i is loyal. By taking k equal

to m in the Validity Lemma, we see that OM(m)
satisfies the Validity Condition. Moreover, since we
are assuming the commander is loyal the Agreement
condition is also satisfied.

2. Suppose the commander is a faulter. At most m-1 of
the lieutenants can be faulters. Since there are more
than 3m processes, there are more than 3m-1 > 3(m-1)
processes in k-{i}. We may therefore apply the
induction hypothesis to conclude that OM(m-1)
satisfies the Agreement and Validity Conditions.
Hence, any two loyal lieutenants get the same vector of
values v1,v2,…,V k-1, and therefore obtain the same
value majority(v1,v2,…,Vk-1) in Step 3, proving the
Agreement Condition.

For an example, for 4 processors, interactively
Four Processor Examples: Nonfaulty Commander

Round 1: processor A executes OM(1), where processor C
(in red) is faulty.

K.Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (1) , 2018, 1-3

www.ijcsit.com 2

Round 2: processors B, C, and D execute OM(0). Dashed
lines indicate messages sent during the previous round.

Three Processor Examples: Faulty Commander

Round 1: processor A executes OM(1), where processor A
is faulty.

Round 2: processors B, C, and D execute OM(0).[6].

5. CONCLUSION
Byzantine Agreement is important both in the theory and
practice of distributed computing. However, protocols to
reach Byzantine Agreement are usually expensive both in
the time required as well as in the number of messages
exchanged. In this paper, we present a self-adjusting
approach to the problem. The Mostly Byzantine Agreement
is proposed as a more restrictive agreement problem that
requires that in the consecutive attempts to reach
agreement, the number of disagreements (i.e., failures to
reach Byzantine Agreement) is finite. Fort faulty processes,
we give an algorithm that has at most disagreements for
4t or more processes. Another algorithm is given for k ≥
t+1 processes with the number of disagreements belowt2/2.

Both algorithms use O(n3) message bits for binary value
agreement.[7].

ACKNOWLEDGEMENTS

 We would like to thank all our supporters for kind support.

REFERENCES
[1] Mukesh Singhal and Niranjan G.Sivaratri.”Advanced Concepts in

Operating Systems”,p.178-194.
[2] Lamport, L.; Shostak, R.; Pease, M. (1982). "The Byzantine

Generals Problem" (PDF). ACM Transactions on Programming
Languages and Systems. 4 (3): 382–
401. Doi:10.1145/357172.357176. Archived from the
original (PDF) on 7 February 2017.

[3] Kirrmann, Hubert (n.d.). "Fault Tolerant Computing in Industrial
Automation" (PDF). Switzerland: ABB Research Center. p. 94.
Retrieved2015-03-02.

[4] Mukesh Singhal and Niranjan G.Sivaratri.”Advanced Concepts in
Operating Systems”,p.178-194.

[5] Driscoll, K.; Hall, B.; Paulitsch, M.; Zumsteg, P.; Sivencrona, H.
(2004). "The Real Byzantine Generals": 6.D.4–61–
11.doi:10.1109/DASC.2004.1390734.

[6] Walter, C.; Ellis, P.; LaValley, B. (2005). "The Reliable Platform
Service: A Property-Based Fault Tolerant ServiceArchitecture":34–
43.doi:10.1109/HASE.2005.23.

[7] Feldman,P.;Micali,S.(1997). "Anoptimalprobabilistic
rotocolforsynchronousByzantineagreement" (PDF). SIAMJ.
Comput. 26 (4):873–933.doi:10.1137/s0097539790187084.

AUTHORS

Mr. K.Nagaraju pursed B.Tech and M.Tech Computer Science and
Engineering from Jawaharlal Nehru TechnologicalUniversity Hyderabad
India in 2005, 2010. And currently working as Assistant Professor in
Department of Computer Technology, RTM Nagpur University of Nagpur
Maharastra India 2013. He has published more than 05 research papers in
reputed international journals His main research work focuses on
Cryptography Algorithms, Network Security, Cloud Security and
Privacy,Data Mining, Distributed ,Parallel Computing and Computational
Intelligence based education.He has 12 years of teaching experience.

S.V.Hemanth pursed B.Tech and M.Tech Computer Science and
Engineering from JawaharlalNehruechnologicalUniversity Hyderabad
India in 2006, 2010. And currently working as Assistant Professor in
Departmentof Computer Technology, RTM Nagpur University of Nagpur
Maharastra India 2013. He has published more than 06 research papers in
reputed international journals His main research work focuses on
Cryptography Algorithms, Network Security, Cloud Security and
Privacy,Data Mining, Parallel Computing and Computational Intelligence
based education . He has 11 years of teaching experience.

K.Nagaraju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (1) , 2018, 1-3

www.ijcsit.com 3

